5(3t^2+2t+4)=5(5t+8)

Simple and best practice solution for 5(3t^2+2t+4)=5(5t+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3t^2+2t+4)=5(5t+8) equation:



5(3t^2+2t+4)=5(5t+8)
We move all terms to the left:
5(3t^2+2t+4)-(5(5t+8))=0
We multiply parentheses
15t^2+10t-(5(5t+8))+20=0
We calculate terms in parentheses: -(5(5t+8)), so:
5(5t+8)
We multiply parentheses
25t+40
Back to the equation:
-(25t+40)
We get rid of parentheses
15t^2+10t-25t-40+20=0
We add all the numbers together, and all the variables
15t^2-15t-20=0
a = 15; b = -15; c = -20;
Δ = b2-4ac
Δ = -152-4·15·(-20)
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{57}}{2*15}=\frac{15-5\sqrt{57}}{30} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{57}}{2*15}=\frac{15+5\sqrt{57}}{30} $

See similar equations:

| 1-4h=17-3h | | 4x+1/2(8x+6)=2(4x+3$ | | Y=24x-x^2 | | -18+2b=b | | -5(4-5x)=130 | | 15x+x=90 | | 6.78+4.4r=-13.02+2.4r | | 8(-4m+8)-3m=-32-3m | | 9*5(x-7)+4=184 | | 20s+16=2s-14+20s | | 15x-90=15x | | -2(7x-2)=17 | | -15v+1=-6-8v | | 9x^2-8x=11 | | -2(7x-2=17 | | 15x+90=15x | | -8.4s=-11.9s-1.75 | | -7(9d-5)=-18 | | 4^(2x-1)=7 | | 2-15k-7=-14k-14 | | 4^2x-1=7 | | 7|w-2|=70 | | 6.42-10d=2.5=8 | | |-8b|=32 | | -2g=-g+14 | | 7-12=x-6+3×6x | | 8-6(1+9n)=25 | | 95.3-19.95=x(.55) | | -14.4n+12.31+14n=-3.1n-3.62 | | 7-12=x-6+3×3 | | 6+3(z-2)=-6z+4 | | 32+4w=8w |

Equations solver categories